StudyPrior for Binary Outcomes

Isaac Gravestock
https://github.com/igrave/StudyPrior

August 24, 2018

The StudyPrior package implements a number of Bayesian priors used for clinical trials. This vignette shows
the methods for trials with a binary outcome.

1 StudyPrior for a Single Historical Study

StudyPrior implements a number of methods that are suitable for creating priors for the success probability 6
based on a single historical study. If a previous study under similar conditions had 21 successes for 37 subjects,
we can use this to construct a prior using power prior (PP) methodology.

x <- 21

n <- 37

#Full Bayes with delta"Be(1,1)

pp.fullbayes.11 <- binom.PP.FB.MC.BE(x = x, n = n, d.prior.a = 1, d.prior.b = 1)
#Full Bayes with delta"Be(.5,.5)
pp.fullbayes.55 <- binom.PP.FB.MC.BE(x = x, n = n, d.prior.a = .5, d.prior.b = .5)

#Power prior with fized delta=0.8
pp-fix.08 <- binom.PP.FIX(x=x, n=n, d=0.8)

These priors returned in the form of a density function for a single probability parameter.

We can also fit an empirical Bayes (EB) prior based on the new study, with say 50 patients.

n.new <- 50
pp.eb <- binom.PP.EB(x=x, n=n, X=0:n.new, N=n.new)

We can plot priors. The EB prior requires the number of successes in the new trial, say 30.

plot(pp.fullbayes.11, col="red",
x1lim=c(0,1), ylim=c(0,6), ylab="Density",
xlab=expression(paste("Success Probability", theta)), las=1)
curve(pp.fullbayes.55, add=TRUE, col="blue")
curve(pp.fix.08, add=TRUE, col="green")
curve(pp.eb(x,30), add=TRUE, col="orange")

legend("topleft", col=c("red","blue","green", "orange"), lty=1, lwd=2,
legend=c("Full Bayes PP B(1,1)", "Full Bayes PP B(.5,.5)",
"Fixed PP d=0.8", "Empirical Bayes PP"))



6 | — Full Bayes PP B(1,1)
—— Full Bayes PP B(.5,.5)
—— Fixed PP d=0.8
Empirical Bayes PP
5
4 —
2
2 3 -
(&)
)
2 —
1 —]
0 —]

0.0 0.2 0.4 0.6 0.8 1.0

Success Probability 6

1.1 Operating Characteristics

Useful functions such as calc.MSE are available to calculate operating characteristics.

MSE <- sapply(list(pp.fullbayes.11, pp.fullbayes.55, pp.fix.08, pp.eb),
function(PRIOR) calc.MSE(prior=PRIOR,
prob.range = c(0.3,0.8), length = 11, n.binom=n.new))

p <- seq(0.3,0.8,len=11)

plot(p,MSE[,1], col="red" , pch=16, type='l',
ylab="MSE", xlab=expression(paste("Success Probability ",theta)),
ylim=c(0.005,0.015), las=1)

lines(p,MSE[,2], col="blue", pch=16)



lines(p,MSE[,3], col="green", pch=16)
lines(p,MSE[,4], col="orange", pch=16)

legend("top", col=c("red","blue","green", "orange"), lty=1, lwd=2,
legend=c("Full Bayes PP B(1,1)", "Full Bayes PP B(.5,.5)",
"Fixed PP d=0.8", "Empirical Bayes PP"))
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To calculate power and type I error, we need to have a second study arm to compare against. For those
functions we calculate the significance tests with sig.matrix and then calculate the operating characteristics.

SM <- lapply(list(pp.fullbayes.11, pp.fullbayes.55, pp.fix.08, pp.eb),
function(PRIOR) sig.matrix(n.new, n.new, 0.95, prior=PRIOR, mc.cores = 1))

For power calculations we need to specify a difference between the treatment arms that we wish to detect,



here 0.2.

Difference <- 0.2

POWER <- sapply(SM, function(SIGMAT) calc.power(sig.mat=SIGMAT,
prob.rang=c(0.3,0.8), length=11, treatment.difference = Difference,
n.binom.control = n.new, n.binom.treatment = n.new))

plot(p,POWER[,1], col="red", type='l', ylab="Power",
xlab=expression(paste("Success Probability ",theta)), las=1)

lines(p,POWER[,2], col="blue")

lines(p,POWER[,3], col="green")

lines(p,POWER[,4], col="orange")

legend("topleft", col=c("red","blue","green", "orange"), lty=1, lwd=2,
legend=c("Full Bayes PP B(1,1)", "Full Bayes PP B(.5,.5)",
"Fixed PP d=0.8", "Empirical Bayes PP"))
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For type I error, we use the same function as for power, but we set the treatment difference to 0.

T1E <- sapply(SM, function(SIGMAT) calc.power(sig.mat=SIGMAT,
prob.rang=c(0.3,0.8), length=11, treatment.difference = 0,
n.binom.control = n.new, n.binom.treatment = n.new))

plot(p,T1E[,1], col="red", type='l', ylab="Type I Error",
xlab=expression(paste("Success Probability ",theta)),
ylim=c(0,0.15), las=1)

lines(p,T1E[,2], col="blue")

lines(p,T1E[,3], col="green")

lines(p,T1E[,4], col="orange")



legend("topleft", col=c("red","blue","green", "orange"), lty=1, lwd=2,
legend=c("Full Bayes PP B(1,1)", "Full Bayes PP B(.5,.5)",
"Fixed PP d=0.8", "Empirical Bayes PP"))
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2 StudyPrior for Multiple Historical Studies

It is also possible to use more than one historical study in the construction of the prior. Say we have 3 more
studies that we want to use:

With multiple historical studies, we can use the meta-analytic predictive prior of Schmidli et al. We specify
the prior on the heterogeneity standard deviation in the format used by INLA. Here we use a truncated normal



Study x n  Success
1 21 37 5%

2 33 50 66%
3 23 40 5%
4 27 50 54%

(which for INLA’s purposes is defined on the log scale) with mean 0 and precision 1.

x.multi <- c(21,33,23,27)
n.multi <- ¢(37,50,40,50)

if (INLA.available){
MAP <- binom.MAP.FB(x.multi, n.multi,
tau.prior = list(prior= "logtnormal", param=c(0,1)))
}

The power prior can also be extended to hand multiple studies. A full Bayes approach with an independent
beta prior on the weight parameters.

PP.FB.11 <- binom.PP.FB.MC.BE(x=x.multi, n=n.multi, d.prior.a = 1, d.prior.b = 1)
PP.FB.55 <- binom.PP.FB.MC.BE(x=x.multi, n=n.multi, d.prior.a = .5, d.prior.b = .5)

Or have correlation between the weight parameters, which shows good operating characteristics.

PP.FB.COR <- binom.PP.FB(x=x.multi, n=n.multi, d.prior.cor = 0.5)

The empirical Bayes approach is also possible.

PP.EB <- binom.PP.EB(x=x.multi, n=n.multi, X=0:n.new, N=n.new)
PP.EB.50 <- binom.PP.EB(x=x.multi, n=n.multi, X=0:n.new, N=n.new, max.dn = 50)

2.1 Approximation with Mixtures

We can approximate the priors with mixtures of densities. This makes calculations of posteriors and some
operating characteristics very fast because analytical formulas are available. This is an approximation whose
accuracy depends on the number of mixture components and can require some time to find all the parameters.

MAP.approx <- conj.approx(MAP, type="beta", max.degree = 3)

curve(MAP, n=200, lty=1, lwd=2, ylab="Density", xlab=expression(theta))
plot(MAP.approx, col="cyan", lwd=2, 1lty=2, add=TRUE, las=1)

legend ("topleft", lty=1:2, col=c("black","cyan"), lwd=2,
legend=c("MAP","Approximation"))
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Here the plot shows the original density in black and the approximation in cyan. With 3 components the
approximation is very good.

2.2 Operating Characteristics

As before we can calculate operating characteristics. The same functions can be applied for in the single and
multiple setting. Here we calculate bias and coverage.

BIAS.PP <- sapply(list(PP.FB.11, PP.FB.55, PP.FB.COR, PP.EB),
function(PRIOR) calc.bias(PRIOR,
prob.range = c(0.3,0.8),
length=11,
n.binom=50)



)

We can also use the mixture approximations in the same functions. Note how much faster the calculations
are with the approximation.

system.time (BIAS.MAP <-
calc.bias(MAP, prob.range = c(0.3,0.8),length=11,n.binom = 50))

#H# user system elapsed
## 6.76 0.00 6.79

system.time (BIAS.APPROX <-
calc.bias(MAP.approx, prob.range = c(0.3,0.8),length=11,n.binom = 50))

#Hit user system elapsed
## 0.02 0.00 0.01

plot(p,BIAS.PP[,1], col="red", type='l', ylab="Bias",
xlab=expression(paste("Success Probability ",theta)),
ylim=c(-0.15,0.15), lwd=2, las=1)
lines(p,BIAS.PP[,2], col="blue", lwd=2)
lines(p,BIAS.PP[,3], col="green", lwd=2)
lines(p,BIAS.PP[,4], col="orange", lwd=2)

if (INLA.available){
lines(p,BIAS.MAP, col="black", lwd=2)
lines(p,BIAS.APPROX, col="cyan", lty=2, lwd=2)

}

legend("topright", col=c("red","blue","green", "orange", "black","cyan"), lty=1, lwd=2,
legend=c("Full Bayes PP B(1,1)", "Full Bayes PP B(.5,.5)",
"Full Bayes PP with Corr=.5", "Empirical Bayes PP","MAP","MAP Approx"))
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For calculating coverage, we implement a smoothing technique based on beta kernels. We must specify a
smoothing parameter. For more details, see Bayarri and Berger, "The Interplay of Bayesian and Frequentist
Analysis’ (Statistical Science, 2004).

COVER <- sapply(list(PP.FB.11, PP.FB.55, PP.FB.COR, PP.EB, MAP),
function(PRIOR) calc.coverage(PRIOR, level = 0.95,
smooth = 0.05, n.control = 50))
p2 <- seq(0.3,.8, len=501)

plot(p2,COVER[300:800,1], col="red", type='l', ylab="Coverage",
xlab=expression(paste("Success Probability ",theta)),

ylim=c(0,1), lwd=2, las=1)

lines(p2,COVER[300:800,2], col="blue", lwd=2)
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lines(p2,COVER[300:800,3], col="green", lwd=2)
lines(p2,COVER[300:800,4], col="orange", lwd=2)
lines(p2,COVER[300:800,5], col="black", lwd=2)

legend("bottom", col=c("red","blue","green", "orange", "black"), lty=1, lwd=2,
legend=c("Full Bayes PP B(1,1)", "Full Bayes PP B(.5,.5)",

Coverage
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